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Abstract—Glaucoma is a widespread ocular disorder leading
to irreversible loss of vision. Therefore, there is a pressing need
for cost-effective screening, such that preventive measures can
be taken. This can be achieved with an accurate segmentation
of the optic disc and cup from retinal images to obtain
the cup-to-disc ratio. We describe a comprehensive solution
based on applying convolutional neural networks to feature-
exaggerated inputs emphasizing disc pallor without blood
vessel obstruction, as well as the degree of vessel kinking.
The produced raw probability maps then undergo a robust
refinement procedure that takes into account prior knowledge
about retinal structures. Analysis of these probability maps
further allows us to obtain a confidence estimate on the
correctness of the segmentation, which can be used to direct
the most challenging cases for manual inspection. Tests on
two large real-world databases, including the publicly-available
MESSIDOR collection, demonstrate the effectiveness of our
proposed system.

Keywords-Glaucoma screening, optic disc segmentation, optic
cup segmentation

I. INTRODUCTION

Glaucoma is an ocular disorder characterized by the
progressive degeneration of optic nerve fibers. Due to its
lack of symptoms in its developing stages, and concurrent
irreversibility once significant vision loss is detected, early
detection of its onset is highly desirable if eventual blindness
is to be avoided. While there has been work done on
predicting glaucoma from other retinal image characteristics
such as vessel distribution [1], FFT/B-spline coefficients
[2] and various texture descriptors [3], most of the known
literature has endeavoured to directly determine the CDR,
generally by segmenting the disc and cup pixels.

Optic disc and cup segmentation has traditionally involved
the judgment of skilled human graders, and can potentially
be time-consuming, requiring about eight minutes per eye
under the Klein protocol [4]. In current clinical practice,
pallor contrast and vessel kinks are among the key features
utilized by graders to estimate the cup boundary [5]. How-
ever, it remains an open problem as to how best to translate
this knowledge into an automated procedure. We propose
a novel data-driven segmentation on convolutional neural
network outputs, instead of the conventional approach of
working directly on the raw or filtered retinal images.

(a) Original disc image (b) With overlays

Figure 1: An example of ground truth disc boundary (in
blue) and cup boundary (in green), with vertical heights

The major contribution of this work is in leveraging the
ability of convolutional neural networks to accurately seg-
ment the optic disc and cup, especially after relevant input
features are appropriately exaggerated. The segmentations
on two databases of retinal images are demonstrated to be
superior or comparable to those from other known state-
of-the-art methods. Additionally, we describe a metric for
quantifying segmentation noise, which allows us to flag
especially challenging images for manual inspection. This
is necessary if our system is to eventually be deployed in a
screening environment.

II. RELATED WORK

There have been a number of attempts at automatically
segmenting the optic disc and cup. To begin with, the general
location of the optic disc needs to be isolated as a precursor
to further classification. This has usually been achieved by
exploiting the properties that the optic disc tends to be much
brighter than its surroundings, and is the ultimate source of
retinal blood vessels [6] [7].

After localization, more exact determinations of the optic
disc boundary have tended to involve adaptations of de-
formable energy-based models. Examples include gradient
vector flow snakes on various colour spaces [8], circular
deformable models [9], iterative knowledge-based clustering
[10], circular Hough transforms [11] [12], ellipse refitting
[13] and the multiresolution sliding band filter [14].



Cup segmentation has as mentioned been recognized to be
a challenging task even for human graders. The generally-
brighter pallor of the optic cup is an obvious characteristic,
and is the primary consideration of many methods. Similar
to the optic disc, deformable models can be applied directly,
as with level-set thresholding following histogram analysis
[15], hull fitting [16], active shape models [10], active
contour models [17] and graph cuts [18].

However, a traditional limitation of such approaches is
their reliance on pallor, which may not be definitive on
images with weak or non-standard contrast. Therefore, the
use of prior information to mitigate such deficiencies is
common. As examples, we compare our method against
pixel-level class estimates obtained from graph cuts on
Gaussian Mixture Models (GMM) [18], as well as from
physiologically-plausible features [19].

Some authors have attempted to extract and operate on
secondary features, such as with a watershed morphologi-
cal transform [20], grouped sparsity constraints on sliding
windows [21], optimal image selection [12] and superpixel
propagation [22]. Other than these intensity-based features,
progress has also been made in spatial heuristic ensembling
of multiple candidate segmentations [23], the incorporation
of vessel kink data [17] and sector analysis using structural
information [24].

Finally, optimal linear reconstruction with codebooks [25]
has resulted in the best currently-known optic cup segmenta-
tion results. This involves first segmenting and normalizing
the disc to a fixed circular template, with illumination
equalization. While the reconstruction-based method has
been shown to perform well in cup segmentation, it depends
on a separate optic disc segmentation algorithm, and cannot
adequately describe irregular cups since its outputs are
limited to ellipse parameters. We address all the limitations
raised above with our proposed method.

III. PROPOSED METHOD

Our method consists of four main stages, applied in order
– the coarse localization of a square region around the optic
disc, the conversion of this region to exaggerate relevant
visual features, the classification of the converted image
with a convolutional neural network to produce a pixel-level
probability map on the retinal background, optic rim and
optic cup classes, and finally the segmentation of that map
to produce the predicted disc and cup boundaries.

We obtain the most probable coarse location of the
optic disc using the Daubechies wavelet transform method
described in [7]. Since we do not depend on any specific
parameters (e.g. the disc centre) from this stage, it is
sufficient that the entirety of the disc is contained within
the square region returned by the localization procedure.
To provide sufficient context about the surrounding retinal
background, we set the width of the square region to about
twice the width of the typical optic disc within.

A. Vessel-free Red-green-kink Feature Exaggeration

We next convert the image to a representation suited for
optic disc and cup segmentation. The blood vessels within
the optic disc tend to obscure the more important pallor and
contrast features, and provide little useful information for
optic cup segmentation with the exception of the location of
vessel kinks. Therefore, the basic idea behind this prepro-
cessing is to replace vessel pixels with the extrapolated disc
intensity as far as is possible, while separately adding back
kink indicators at the relevant locations.

Firstly, we obtain a mask of the vessels (Figure 2b)
by trench detection [26]. Ideally, the width of the mask
should completely cover the vessels, with an additional slight
margin. A certain amount of vessel over-segmentation is
acceptable, since the intent is to completely remove the
influence of vessels on the optic disc image.

The masked vessel pixels are then filled in with plausible
optic disc background pixels from outside the vessel mask,
through nonparametric patch sampling (Figure 2c). This
process attempts to automatically reconstruct the appearance
of the optic disc as if the vessels were not present [2] [14]
[24]. From this inpainted image, we extract the red and
green channels, since it is popularly recognized that the blue
channel contains little information of value in retinal image
analysis, and equalize the channel histograms (Figure 2d).

We then skeletonize the vessel mask (Figure 2e). Unlike
previous methods [5] [17], we need not try to qualify the
“correct” kinks explicitly, as they will be inferred during
CNN classification. We therefore represent all vessel kinks in
the input. The raw kink strength is defined at a skeletonized
vessel pixel p, by considering the p − k and p + k pixels
before and after it along the same vessel segment, if and
only if {p − k, p + k} exist unambiguously (i.e. there are
no junctions along the vessel segment within the range). A
circular arc is fitted to the three points {p, p− k, p+ k}, by
estimating the chord w and height h of the arc, and thereby
the circle radius r. The raw kink strength K is then derived
from r:

K =


√
1/r, if r > 0

0.0, otherwise
(1)

The values of the raw kink strength map (Figure 2f) are
first linearly normalized to lie between 0 and 1, and then
expanded by first dilating nonzero vessel strength pixels by
d pixels, before applying a Gaussian blur with kernel σ (Fig-
ure 2g). For our experiments, we use k = 9, d = 7, σ = 10.

The finished converted representation (Figure 2h) then
comprises the histogram-equalized vessel-free red-green im-
age (Figure 2d), combined with the blue channel from the
expanded kink strength map (Figure 2g), and is designed to
exaggerate the most visually-relevant features used for optic
disc and cup segmentation.



(a) Original disc image (b) Vessel mask (c) Vessel removal by
patch-based inpainting

(d) Histogram equalized
vessel-free red-green image

(e) Skeletonized vessel mask
(inset from Figure 2b)

(f) Raw kink strength map
(same region as Figure 2e)

(g) Expanded kink strength
map

(h) Converted image
(combines Figures 2d and 2g)

Figure 2: Vessel-free red-green-kink conversion

B. Three-Class CNN Pixel-Level Classification

Each pixel within the converted representation is then
individually classified with a convolutional neural network
(CNN). CNNs have recently shown themselves to be among
the most effective techniques for image classification tasks.
In the biomedical field, they have been applied to the iden-
tification of mitotic cells [27] and segmentation of neuronal
membranes [28], but not yet to the optic disc, as far as is
known.

The theoretical justification for utilizing CNNs is their
capability to consider the detailed neighbourhood context of
each and every pixel, in computing its class probability. The
variability between different optic disc images has been a
major challenge faced by other recent approaches. In some
[18], the probability estimate for a pixel is fixed depending
solely on the input colour. In others [22], the potential
accuracy is restricted by the pre-grouping of pixels into
larger superpixel units. In contrast, CNNs suffer neither of
these limitations.

CNNs are specialised feedforward multi-layer perceptrons
that consist of alternating convolutional and subsampling
layers [29]. Each layer consists of a number of nodes,
organized into maps, that are connected to nodes in the next
layer. Layers are composed of three main types: convolu-
tional, max-pooling and fully-connected.

1) Convolutional layer: A convolutional (C) layer em-
phasizes spatially-local correlations by accepting connec-

tions only from the immediate neighbourhood of a pixel. It
is composed of multiple layer maps of identical dimensions.
Each node in a convolutional layer map is connected to
nodes of a map in the previous layer by a kernel, as
illustrated in Figure 3b. Each unique combination of maps
between layers has its own kernel, and thus shares a set of
weights.

2) Max-pooling layer: A max-pooling (MP) layer map
downsamples a convolutional layer map by first dividing
it into disjoint uniform-sized pooling windows, and then
assigning to each node in the max-pooling layer map the
maximum individual value from the corresponding window.
This provides a degree of spatial invariance, and reduces the
amount of computation required by succeeding layers due
to the reduction in the number of nodes. It has been found
to be perform better compared to conventional subsampling
by averaging.

3) Fully-connected layer: A fully-connected (FC) layer
is defined by having each of its nodes connected to every
node in the previous layer, with each connection having an
independent weight. This is necessary at the conclusion of
the CNN to combine the final max-pooled results into a
single output vector. By using a softmax function, this vector
can be interpreted as the probabilities {Pb, Pr, Pc} s.t. Pb +
Pr + Pc = 1, which are the predicted likelihoods that the
input pixel belongs to the background, rim and cup classes
respectively.



(a) 48× 48 input kernel on
157× 157 input image

(b) Types of layers (c) Ground truth training
image

Figure 3: Convolutional neural network operation

For all convolutional and fully-connected layers, we use
a scaled hyperbolic tangent activation function tanh.

Training of a CNN consists of first randomly initializing
all weights with values uniformly distributed in the range
[−0.05, 0.05]. An equal number of source pixels from each
class are then sampled from the training set, and randomly
ordered. During each training iteration, an image patch of
random orientation centered on the current source pixel, and
of dimension equal to the input layer map, is used as the
input to the CNN (Figure 3a). These input values are then
forward propagated through the CNN layers, with the output
of each layer feeding into the next layer as input, eventually
producing an output vector from the last layer.

The error between the actual and expected output vector
values at the last layer, as defined by the ground truth
training output (Figure 3c), is then used to update the
connection weights by gradient descent backpropagation
[29]. The objective of this process is to minimize the mean
output error, over many iterations. Note that since we wish
to focus on learning the difference between the background
and rim, we undersample background pixels that are more
than 15 pixels distant from the rim boundary.

Training of the CNNs was performed using a custom
C++/OpenCL implementation on four AMD Radeon HD
7970 GPUs. We use an epoch size of 1.5 million and a
learning rate of 0.001, with a decay of 0.9 per epoch.
Training is stopped upon convergence on the softmax loss
of the output layer, which was generally achieved after
about twenty epoches. The architecture of the CNN used
is described in Table I.

C. Probability Map Segmentation

The CNN probability map predictions may be noisy,
which is accounted for by the following segmentation pro-
cedure. The upscaled probability map outputs from the
CNN are first averaged over four input orientations (θ =
0◦, 90◦, 180◦, 270◦), before the application of a small Gaus-
sian blur (σ = 21) to smooth out noise (Figure 4a). To
enforce the constraint that the optic cup must be wholly

Layer Type Maps × (nodes) Kernel Weights Connections

0 I 3 × (48 × 48) – – –
1 C 20 × (44 × 44) 5 × 5 1520 2942720
2 MP 20 × (22 × 22) 2 × 2 – –
3 C 20 × (18 × 18) 4 × 4 10020 3246480
4 MP 20 × (9 × 9) 2 × 2 – –
5 C 40 × (6 × 6) 4 × 4 12840 462240
6 MP 40 × (3 × 3) 2 × 2 – –
7 FC 100 × (1 × 1) – 36100 36100
8 FC 3 × (1 × 1) – 303 303

Type: I=Input, C=Convolutional, MP=Max-pooling, FC=Fully-connected

Table I: 9-layer CNN architecture used

contained within the optic disc, we start by determining the
disc boundary. First, a disc boundary probability is defined
at each pixel as:

PD =

r/(r + b), if r/(r + b) < TD

1.0, otherwise
(2)

where r is the original rim class probability, b is the
original background class probability, and TD is a parameter
thresholding the boundary strength. The optic disc cen-
terpoint and approximating ellipse are estimated using an
elliptical Hough transform. We then obtain the final disc
segmentation by transforming the boundary strength map
into polar coordinates (θ = 2◦, d = 2) on the estimated cen-
terpoint, and then apply dynamic programming to find the
best path. This has previously been used only with features
directly extracted from the image, such as edge strength,
texture and pixel variation [30]. The cup segmentation is
likewise obtained on PC → BC by the same procedure,
with all cup pixels falling outside the rim area removed.

Finally, we quantify the reliability of the final disc and
cup segmentation. Let the segmentation noise be defined as:

N = (1− (Cm ∩ C)/Cm) + (1− (Rm ∩R)/Rm) (3)



(a) Blurred combined
probability map

(b) Disc boundary weighted
edge strength

(c) Cup boundary weighted
edge strength

(d) Smoothed final disc and
cup segmentations

Figure 4: Probability map segmentation procedure
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where Rm and Cm are the set of pixels classified as rim
and cup respectively in the blurred probability map, and
R and C are the set of pixels classified as rim and cup
respectively in the final segmentation. The more closely the
pixel-level classifications agree with the final segmentation,
the more reliable the segmentation is considered to be.

IV. EMPIRICAL EVALUATION

To demonstrate the effectiveness of our proposed CNN-
FE method, we conduct comprehensive experiments on two
large databases of real-world retinal images.

The MESSIDOR database is a public fundus image
database of 1200 images of dimensions ranging from 1440×
960 to 2304 × 1536, with corresponding optic disc ground
truth segmentations available separately.

The SEED-DB database consists of 235 images of dimen-
sion 3504× 2336 from the Singapore Epidemiology of Eye
Disease (SEED) program, 43 with glaucoma, and 192 with-
out (Figure 5). Each image has a ground truth segmentation
GT marked by a trained grader. For each image, we localize
a region of dimension 791 × 791 containing the optic disc
and its immediate neighbourhood.

We first evaluate the performance of CNN-FE on optic
disc segmentation against a collection of recent state-of-the-
art methods on both MESSIDOR and SEED-DB. We then
similarly evaluate the performance of CNN-FE on optic cup
segmentation, vertical cup-to-disc ratio determination and as
a glaucoma screening measure on SEED-DB.

A. Methodology

For all of the following experiments, we divide the set
of images into four approximately equal-sized folds. Then,
to segment images in any particular fold, all images in the
other three folds are used in cross-validation training of
the required CNN models. To evaluate whether the feature
exaggeration is in fact essential, we train our CNNs with
both the feature-exaggerated (CNN-FE) and original (CNN-
OR) retinal images as input, with performance maximized
on a grid search on {TD, TC} as described in Section III-C.
We apply CNN-FE and CNN-OR on the regions after they
are rescaled to a size of 157 × 157 pixels.

We focus on two commonly-used metrics to quantify
our segmentation accuracy. Firstly, the non-overlap ratio
(NOR) m1 measures the extent to which the segmented area
overlaps with the ground truth, and is defined as:

m1 = 1− Edt ∩ Egt

Edt ∪ Egt
(4)

where Edt is the predicted optic cup (or disc) region, and
Egt is the corresponding ground truth cup (or disc) region.

Secondly, the absolute vertical cup-to-disc (CDR) error
δ is the difference between the predicted and ground truth
vertical cup-to-disc ratios, and is defined as:

δ = |CDRdt − CDRgt| (5)

where CDRdt is the predicted cup-to-disc ratio, and
CDRgt is the ground truth cup-to-disc ratio. The cup-to-
disc ratio is defined as the maximum vertical height of the
cup region, divided by the maximum vertical height of the
disc region. An example of these heights can be found in
Figure 1b.
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B. Optic disc segmentation

For optic disc segmentation, ground truth data is available
on both the MESSIDOR and SEED-DB databases. In the
case of MESSIDOR, our training input consists only of
the background and optic rim classes. We compare the
obtained non-overlap ratio statistics with Hausdorff-based
template matching [31], circular Hough transform [11],
superpixel [22], ellipse refitting [13] and sliding band filter
[14] methods. Their results listed in Table II are as obtained
from the relevant papers.

We have reimplemented the prior-based graph cut (PBGC)
[18] and physiologically-plausible features (PPF) [19] meth-
ods. For PBGC, we explored using the original, greyscale-
converted and histogram-equalized images, and report the
best results, which were obtained using histogram-equalized
inputs. For PPF, we have omitted the sole stereo-dependant
disparity feature among the twelve used.

CNN-FE [14] [13] [22] [11] [31]
Mean m1 0.112 0.114 0.120 0.125 0.140 0.190

m1 ≤ 0.30 0.964 0.94 0.94 – 0.93 0.85
m1 ≤ 0.25 0.948 0.92 0.92 0.92 0.90 0.77
m1 ≤ 0.20 0.922 0.87 0.88 0.86 0.84 0.70
m1 ≤ 0.15 0.864 0.81 0.82 0.76 0.73 0.45
m1 ≤ 0.10 0.614 0.66 0.59 0.51 0.46 0.25
m1 ≤ 0.05 0.073 0.23 0.13 0.08 0.07 0.02

Table II: Optic disc NOR results, MESSIDOR

For SEED-DB, we compare the CNN-FE results only
against those obtained by PBGC and PPF (Table III), since
reconstruction-based localization is purely an optic cup
segmentation method.

The first row in Tables II and III give the mean NOR
obtained by each of the methods. The remaining rows in
the tables describe the distribution of the NOR values.

We observe that the optic disc segmentation performance
of CNN-FE is superior to that of known state-of-the-art

Method/Ground truth
CNN-FE CNN-OR PBGC PPF

Mean m1 0.0843 0.0961 0.1050 0.1255

m1 ≤ 0.30 0.996 0.974 0.871 0.953
m1 ≤ 0.25 0.991 0.962 0.849 0.909
m1 ≤ 0.20 0.987 0.949 0.806 0.858
m1 ≤ 0.15 0.970 0.923 0.754 0.767
m1 ≤ 0.10 0.759 0.774 0.703 0.552
m1 ≤ 0.05 0.108 0.119 0.058 0.047

Table III: Optic disc NOR results, SEED-DB

methods. While CNN-FE segmentation tends not to be as
exactly precise on the best-segmented images, relative to
results from the sliding band filter and ellipse refitting, this
is made up with there being fewer severe errors as compared
to other methods, which may be due to discs with less
straightforward boundaries being better interpreted by the
CNN pixel-level classifier.

C. Optic cup segmentation

For optic cup segmentation, ground truth data is available
only on the SEED-DB database. As a further comparison
in addition to PBGC and PPF, we have reimplemented
the reconstruction-based optic cup localization method with
codebooks (RCN), as described in [25], which currently
produces the best optic cup segmentations based on both
absolute CDR error and NOR metrics, to the best of
our knowledge. The reconstruction-based with codebooks
method has been empirically demonstrated to strongly dom-
inate the recent pixel [15], sliding window [21], threshold
[32], r-bend [17] and superpixel [22] based approaches, as
reported in [22] and [25].

Since reconstruction-based localization requires a prior
optic disc segmentation, we provided it with both the ground
truth disc segmentation (RCN-GTD), as well as the CNN-FE
disc segmentation (RCN-CD), to check for consistency and
to simulate real-world operation. We have also taken care to
search for an optimal regularization weight, and found that
performance is maximized at λ = 70000 (Figure 6) on both
the absolute CDR error and NOR metrics.

The results for optic cup NOR, and for the absolute CDR
error (including weighted kappa κW as defined in [33]) are
given in Table IV. For all methods, the three images (1.3% of
the total) rejected due to having segmentation noise N ≥ 1
were ignored in calculating the results.

We observe that CNN-FE offers a considerable im-
provement over the reconstruction-based, physiologically-
plausible features and prior-based graph-cut methods, on
both the optic cup NOR and absolute CDR error metrics
(Table IV). The relative improvement of CNN-FE against
RCN-CD, PPF and PBGC are 14.2%, 40.9% and 65.5% on
the absolute CDR error metric, and 13.7%, 28.7% and 65.2%
on the NOR metric respectively.



CNN-FE CNN-OR RCN-GTD RCN-CD PPF PBGC
Mean δ 0.0608 0.0754 0.0740 0.0709 0.1028 0.1764
Std dev δ (±0.0503) (±0.0851) (±0.0578) (±0.0582) (±0.0853) (±0.1120)
κW δ 0.707 0.590 0.586 0.609 0.155 0.130

Mean m1 0.2302 0.2400 0.2729 0.2667 0.3230 0.6617
Std dev m1 (±0.1326) (±0.1459) (±0.1240) (±0.1220) (±0.1731) (±0.1613)

m1 ≤ 0.30 0.793 0.759 0.671 0.655 0.547 -
m1 ≤ 0.25 0.692 0.664 0.495 0.464 0.427 -
m1 ≤ 0.20 0.524 0.496 0.292 0.270 0.237 -
m1 ≤ 0.15 0.304 0.269 0.116 0.107 0.082 -
m1 ≤ 0.10 0.052 0.050 0.022 0.021 0.013 -
m1 ≤ 0.05 0.002 0.000 0.002 0.004 0.000 -

Table IV: Optic cup NOR & absolute CDR error results, SEED-DB
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Figure 7: Glaucoma screening ROC curve

The reconstruction-based localization method indeed per-
forms well in general. However, it does not accommodate
adequately the challenging cases where the optic cup pallor
is not well-defined.

We observe that the prior-based graph-cut method is
strongly affected by vessel boundaries. This could be ex-
pected as an intensity-based GMM cannot mitigate for the
neighbourhood context (i.e. a pixel of a certain pallor may be
found within the cup in a dark image, but within the rim in a
bright image). While this can be mitigated to a certain extent
by histogram equalization, the pixel classification remains
less reliable, especially given colour variance in real-life
datasets. This is compensated somewhat with the inclusion
of cup and rim priors for the physiologically-plausible
features method, which however causes the segmentation
result to be sensitive to the input being accurately centered.

Since the desired end-product is a screening model that
should remove glaucoma-free images from further consid-
eration, while retaining as many possible glaucoma cases
as possible, we perform four-fold cross-validation using
radial basis function support vector machines (SVM) on two
features: the predicted vertical cup-to-disc ratios, and the

predicted disc height. The receiver operating characteristic
(ROC) curves obtained from the SVM classifier on features
from CNN-FE, from simple thresholds on CDR from CNN-
FE, RCN-GTD and RCN-CD, as well as from the provided
inter-grader agreement rate, are shown in Figure 7.

Overall CNN-FE screening performance (AUC = 0.847)
is superior to the reconstruction-based method (AUC =
0.838), but remains somewhat below the inter-grader agree-
ment rate (AUC = 0.936), due to several of the most chal-
lenging glaucoma images. The improved accuracy on CDR
has translated to improved performance at sensitivity levels
between about 0.4 and 0.75, as compared to reconstruction-
based localization. The lower NOR error rate does not have
a direct impact on screening as of yet, but could be helpful
in any follow-up inspections by human graders.

V. CONCLUSION

We have presented an accurate and reliable method for
segmenting the optic disc and optic cup regions from retinal
images, that outperforms all other known methods on the
commonly-used absolute vertical cup-to-disc error and non-
overlap ratio metrics, as demonstrated on two large databases
of real-world images. This is essential both for the proposed
system to serve as a screening tool, and as an aid that
provides an initial suggested boundary for human graders.
Further work is planned in investigating the incorporation of
additional features, such as parapapillary atrophy.
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[28] D. C. Cireşan, A. Giusti, L. M. Gambardella, and J. Schmid-
huber, “Deep neural networks segment neuronal membranes
in electron microscopy images,” in NIPS 2012, 2012, pp.
2843–2851.

[29] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proc. IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[30] M. B. Merickel Jr, X. Wu, M. Sonka, and M. D. Abràmoff,
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