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Abstract

With the increase in age and diabetes-related eye dis-
eases, there is a rising demand for systems which can ef-
ficiently screen and locate abnormalities in retinal im-
ages. In this paper, we propose a framework that uti-
lizes a variant of the Maximally Stable Extremal Region
method, termed C-MSER, to systematically detect var-
ious retinopathy pathologies such as microaneurysms,
haemorrhages, hard exudates and soft exudates. Exper-
iments on three real-world datasets show that C-MSER
is effective for online screening of diabetic retinopathy.

1. Introduction

Automated screening for diabetic retinopathy is a
natural development given the worldwide prevalence
of the elderly and diabetic demographics. Diabetic
retinopathy can be manifested in many forms, and
common pathologies include microaneurysms (MAs),
haemorrhages (HAEs), hard exudates (HEs) and soft
exudates (SEs), as illustrated in Figure 1.

Figure 1: Examples of various types of pathologies.
MA (blue), HAE (green), HE (yellow), SE (pink)

Attempts at automated screening of diabetic
retinopathy date back to the 1980s, with the first
acceptable systems appearing in the late 1990s, most
notably a system for detecting microaneurysms in
fluorescein angiographic images by the Aberdeen
group [12]. Most recently, systems employing tem-
plate matching using wavelets [10], Gaussian kernels
[13] and double-ring filters [5] have exhibited good
performance on MAs, but it remains unproven whether
such techniques can be effectively generalized to other
pathologies that do not conform to the relatively uni-
form appearance of MAs. Methods relying on machine
learning and classification of sub-images of fixed size
have also been attempted [2], but are generally unable
to delineate the precise extent of the pathologies.

Clearly, an ideal fully automated screening system
should be to be able to take a good-quality color fundus
photograph of a retina and indicate whether pathologies
exist in the image, and if so, where; in other words, the
system must be able to handle all types of pathologies.
In this paper, we propose the concept of a Constrained-
Maximally Stable Extremal Region (C-MSER). The
key idea is that visually-distinct regions conforming to
pathologies may be nested, and it is useful to deter-
mine which of the nested regions corresponds to the
most plausible description of an individual pathology.
The C-MSER concept segments appropriate pathology
candidates, and has produced classification results com-
parable to the state-of-the-art, where comparisons are
available, for multiple types of pathologies, at both the
lesion and image levels.

2. Background and Related Work

Much research in retinopathy detection has focused
on MAs, which are tiny saccular bulges in the walls
of capillary vessels appearing as distinct small, round
and reddish objects. Their relatively uniform appear-
ance and high correlation with retinopathy diagnosis
has made them an ideal target for automated systems.



Work in this respect has most recently cumulated in the
Retinopathy Online Challenge (ROCh) [6], which eval-
uates participants on a common test dataset. The best
results obtained boasted successful detection of approx-
imately 40% of all MAs at a rate of one false positive
per image.

In any case, exceptional detection performance at the
level of individual pathologies is not strictly necessary
for screening purposes, with 100% sensitivity and 87%
specificity reported at the image level based on a per-
MA sensitivity of some 30% [7]. As such, deployable
practical screening at the image level has been claimed
to be feasible by several authors [9] [1]. However, we
feel that there remains room for investigation, both in
the identification of MA candidates and also in the iden-
tification of other types of pathologies which may not be
as regular in terms of shape and other characteristics,
and have therefore been paid relatively little attention.

3. Constrained-Maximally Stable Extremal
Regions (C-MSER)

We observe that many pathologies appear to the hu-
man eye as a reasonably well-defined color blob that is
visually separate from the background. In other words,
the blob is relatively stable at some intensity, since its
size does not change much when the image is binarized
at successive thresholds in its green channel. In this
section, we adapt the concepts expressed in [4] to de-
fine Constrained-Maximally Stable Extremal Regions
(C-MSER) for the detection of various pathologies in
retinal images.

Given a greyscale (green channel) image D, we de-
fine a region Q as a contiguous subset of D, i.e. for all
pixels p, q ∈ Q there is a sequence p, a1, . . . , an, q such
that p is 4-adjacent to a1, ai is 4-adjacent to ai+1, and
an is 4-adjacent to q. A region boundary is then defined
as δQ = {q ∈ D \ Q : ∃p ∈ Q : q is 4-adjacent to p},
i.e. the region boundary δQ of Q is the set of pixels
adjacent to at least one pixel in Q, but is not itself in Q.
A region Q is nested within another region Q′, denoted
by Q ⊂ Q′, if all the pixels in Q also belong to Q′.

An extremal region Qt ⊂ D at some threshold t is
then a region such that for all p ∈ Qt, q ∈ δQt, we
have I(p) ≤ t < I(q) where I(x) is the intensity of a
pixel x ∈ D. Given a parameter ∆, the stability of a re-
gion Qt is defined as s(t) = |Qt+∆ \ ∀Qt−∆|/|Qt|.
Note that this definition may differ from the original
definition for regions with multiple child regions, and
is justified by the argument that visual stability is better
expressed by the relative change of total region size at

different thresholds, regardless of whether these regions
happen to be separated, at lower thresholds.

Figure 2 shows an example of an extremal region,
delineated by the red region Q109. This region grows to
19 pixels at a threshold of 111 (Q111), and shrinks to 15
pixels at a threshold of 107 (Q107). Therefore, for ∆ =
2, its stability is (19− 15)/16 = 0.25.

Figure 2: Example extremal regions:
Q109 (bounded in red), Q107 (blue), Q111 (green)

We use a max-tree to keep track of all the extremal
regions for various thresholds. Each node in the max-
tree corresponds to an extremal region. A node n1 is a
child of another node n2 if and only if the region Qt1

corresponding to n1 is nested within the regionQt2 cor-
responding to n2, and there exists no other extremal re-
gion Q such that Qt1 ⊂ Q ⊂ Qt2. This max-tree rep-
resentation can be created in linear time [11] [8]. Based
on the max-tree representation, an extremal regionQt is
a maximally stable extremal region (MSER) if and only
if its stability is at a local minimum.

This definition is however not completely ideal for
our purposes, since it is possible for a single pathology
to correspond to multiple MSER. We therefore propose
retaining only the most appropriate MSER from each
such nested set, by introducing the idea of Constrained-
Maximally Stable Extremal Regions (C-MSER). Figure
3 shows an example where MSER regions A and B cor-
respond to a single MA.

We first use the max-tree to determine all the MSER.
Then, an MSER n is a C-MSER if there is no other
more-stable MSER n′ along the same path as n such
that 1

r ≤
size(n)
size(n′) ≤ r, where r is some user-defined

threshold and size(n) denotes the area of the region
corresponding to node n. Suppose r = 4. It follows
that region B is an MSER, but not a C-MSER as its size
ratio is within the threshold r of region A (shaded in
green in Figure 3), which has a better stability.

This proposed C-MSER approach has the ability to
detect relevant distinct regions at multiple scales in a
single pass, regardless of shape profile, and select an
appropriate extent of the pathologies. Furthermore, C-
MSER segmentation is linear in terms of time complex-
ity, making it suitable for real-time screening.



Figure 3: An example of nested features, with associated stability
and size curves, and partial max-tree representation. Note that

stability may not correspond to ∆size along a single path.

4. Experimental Results

In this section, we describe the results of experiments
to evaluate the performance of C-MSER on various reti-
nal image datasets. We set ∆ = 2 and r = 4 for all
experiments. Bright pathologies were detected with the
same procedure on the inverted-intensity images.

4.1. DIARETDB1 Dataset

We first evaluate the C-MSER method on the DI-
ARETDB11 dataset [3], where the ground truths for
four major classes of pathologies (MAs, HAEs, HEs
and SEs) are supplied. For comparison, besides the
colour locus-based results presented in [3], we also im-
plemented a template matching method (TM) by using
a filterbank of filters at various sizes and orientations
that are suited to the different classes of pathologies.

We follow the methodology in [3] in training each
method on the same 21 images, before testing on the re-
maining 68 images. An image is considered a true pos-
itive for some class of pathology if its ground truth for

1We thank the organizers of the Retinopathy Online Challenge as
well as the Machine Vision and Pattern Recognition Research Group
at the Lappeenranta University of Technology for the provision of
their retinal colour fundus image databases.

that class contains at least one pixel with a confidence
level of 75% or above, and negative otherwise. For both
C-MSER and template matching, we use a learnt dis-
criminant table to identify individual candidates in the
test images, then classify at the image level based on
findings at the lesion level. The image level ROC curves
obtained are shown in Figure 4. It can be seen that the
C-MSER method outperforms the other two methods,
especially in the case of HAEs and SEs, which often
vary more strongly in their characteristics.

(a) Microaneurysm (b) Haemorrhages

(c) Hard Exudates (d) Soft Exudates

Figure 4: ROC plots of image-level classification for various types of
pathologies on the DIARETDB1 dataset.

4.2. Retinopathy Online Challenge Dataset

Next, we employ the Retinopathy Online Challenge
(ROCh)1 training dataset, which consists of 50 images
with associated MA ground truth data, to evaluate the
performance of C-MSER for lesion-level MA detection.
We implemented the existing state-of-the-art Hierarchi-
cal Gaussian [13] and Double Ring [5] methods, based
on their published descriptions, for comparison. The
same vessel masks and classification procedure (by con-
structing a discriminant table with 31 features as de-
scribed in [13]) are used to evaluate all three methods.

We vary the stability threshold for C-MSER, and the
correlation coefficient/response threshold for the other
two methods, to plot the free-response ROC (FROC)
graph for MA detection. Figure 5 shows the results.
We observe that the C-MSER method outperforms the
Hierarchical Gaussian and Double Ring methods when
the average false positives per image is less than 8, indi-
cating that C-MSER is suitable for screening purposes.



The seemingly low sensitivities for all three methods
may be attributed to the large proportion of barely-
visible MAs in the Retinopathy Online Challenge train-
ing dataset.

Figure 5: FROC plots of various MA detection methods
on the Retinopathy Online Challenge dataset

4.3. DR Evaluation Dataset

Finally, we applied our proposed approach to the DR
Evaluation (DRE) dataset, which consists of 417 images
taken from a population-based Singapore Malay Eye
Studies (SiMES) database that has been graded manu-
ally by experts for multiple classes of pathologies. Fig-
ure 6 shows the results. We observe that a majority of
the pathologies can be detected at a relatively low false
positive rate at the lesion level, with the relatively poor
performance on soft exudates attributable to confusion
with the far more numerous hard exudates.

Figure 6: FROC plots of detection results on the DRE dataset

5. Conclusion

In this paper, we have described how we adapted the
concept of MSER to identify multiple types of patholo-
gies within a retinal image simultaneously, and eval-
uated its effectiveness on three retinal image datasets.
The experimental results demonstrate that the proposed
approach is able to achieve competitive results on the
detection of MA, HAE, HE and SE in all datasets.
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